martes, 18 de octubre de 2011

Tipos de Planificacion de Procesos

Planificación a Plazo Fijo
Ciertos trabajos se planifican para ser terminados en un tiempo específico o plazo fijo. Es una planificación compleja debido a los siguientes factores:
  • El usuario debe suministrar anticipadamente una lista precisa de recursos necesarios para el proceso, pero generalmente no se dispone de dicha información.
  • La ejecución del trabajo de plazo fijo no debe producir una grave degradación del servicio a otros usuarios.
  • El sistema debe planificar cuidadosamente sus necesidades de recursos hasta el plazo fijo, lo que se puede complicar con las demandas de recursos de nuevos procesos que ingresen al sistema.
  • La concurrencia de varios procesos de plazo fijo (activos a la vez) puede requerir métodos sofisticados de optimización.
  • La administración intensiva de recursos puede generar una considerable sobrecarga adicional.
Planificación Garantizada
Se establecen compromisos de desempeño con el proceso del usuario, por ejemplo, si existen “n” procesos en el sistema, el proceso del usuario recibirá cerca del “1 / n” de la potencia de la cpu.
El sistema debe tener un registro del tiempo de cpu que cada proceso ha tenido desde su entrada al sistema y del tiempo transcurrido desde esa entrada.
Con los datos anteriores y el registro de procesos en curso de ejecución, el sistema calcula y determina qué procesos están más alejados por defecto de la relación “1 / n” prometida y prioriza los procesos que han recibido menos cpu de la prometida.

Planificación del Primero en Entrar Primero en Salir (FIFO)
Es muy simple, los procesos se despachan de acuerdo con su tiempo de llegada a la cola de listos.
Una vez que el proceso obtiene la cpu, se ejecuta hasta terminar, ya que es una disciplina “no apropiativa”.
Puede ocasionar que procesos largos hagan esperar a procesos cortos y que procesos no importantes hagan esperar a procesos importantes.
Es más predecible que otros esquemas.
No puede garantizar buenos tiempos de respuesta interactivos.
Suele utilizarse integrado a otros esquemas, por ejemplo, de la siguiente manera:
  • Los procesos se despachan con algún esquema de prioridad.
  • Los procesos con igual prioridad se despachan “FIFO”.
Planificación de Asignación en Rueda (RR: Round Robin)
Los procesos se despachan en “FIFO” y disponen de una cantidad limitada de tiempo de cpu, llamada “división de tiempo” o “cuanto”.
Si un proceso no termina antes de expirar su tiempo de cpu ocurren las siguientes acciones:
  1. La cpu es apropiada.
  2. La cpu es otorgada al siguiente proceso en espera.
  3. El proceso apropiado es situado al final de la lista de listos.
Es efectiva en ambientes de tiempo compartido. La sobrecarga de la apropiación se mantiene baja mediante mecanismos eficientes de intercambio de contexto y con suficiente memoria principal para los procesos.

Tamaño del Cuanto o Quantum
La determinación del tamaño del cuanto es decisiva para la operación efectiva de un sistema computacional 
Los interrogantes son: ¿cuanto pequeño o grande?, ¿cuanto fijo o variable? y ¿cuanto igual para todos los procesos de usuarios o determinado por separado para cada uno de ellos?.
Si el cuanto se hace muy grande, cada proceso recibe todo el tiempo necesario para llegar a su terminación, por lo cual la asignación en rueda (“RR”) degenera en “FIFO”.
Si el cuanto se hace muy pequeño, la sobrecarga del intercambio de contexto se convierte en un factor dominante y el rendimiento del sistema se degrada, puesto que la mayor parte del tiempo de cpu se invierte en el intercambio del procesador (cambio de contexto) y los procesos de usuario disponen de muy poco tiempo de cpu.
El cuanto debe ser lo suficientemente grande como para permitir que la gran mayoría de las peticiones interactivas requieran de menos tiempo que la duración del cuanto, es decir que el tiempo transcurrido desde el otorgamiento de la cpu a un proceso hasta que genera una petición de Entrada / Salida debe ser menor que el cuanto establecido, de esta forma, ocurrida la petición la cpu pasa a otro proceso y como el cuanto es mayor que el tiempo transcurrido hasta la petición de Entrada / Salida, los procesos trabajan al máximo de velocidad, se minimiza la sobrecarga de apropiación y se maximiza la utilización de la
Entrada / Salida.
El cuanto óptimo varía de un sistema a otro y con la carga, siendo un valor de referencia 100 mseg (cien milisegundos).

Planificación del Trabajo Más Corto Primero (SJF)
Es una disciplina no apropiativa y por lo tanto no recomendable en ambientes de tiempo compartido.
El proceso en espera con el menor tiempo estimado de ejecución hasta su terminación es el siguiente en ejecutarse.
Los tiempos promedio de espera son menores que con “FIFO”.
Los tiempos de espera son menos predecibles que en “FIFO”.
Favorece a los procesos cortos en detrimento de los largos.
Tiende a reducir el número de procesos en espera y el número de procesos que esperan detrás de procesos largos.
Requiere un conocimiento preciso del tiempo de ejecución de un proceso, lo que generalmente se desconoce.
Se pueden estimar los tiempos en base a series de valores anteriores.

Planificación del Tiempo Restante Más Corto (SRT)
Es la contraparte apropiativa del SJF.
Es útil en sistemas de tiempo compartido.
El proceso con el tiempo estimado de ejecución menor para …nalizar es el siguiente en ser ejecutado.
Un proceso en ejecución puede ser apropiado por un nuevo proceso con un tiempo estimado de ejecución menor.
Tiene mayor sobrecarga que la planificación SJF.
Debe mantener un registro del tiempo de servicio transcurrido del proceso en ejecución, lo que aumenta la sobrecarga.
Los trabajos largos tienen un promedio y una varianza de los tiempos de espera aún mayor que en SJF.
La apropiación de un proceso a punto de terminar por otro de menor duración recién llegado podría significar un mayor tiempo de cambio de contexto (administración del procesador) que el tiempo de finalización del primero.
Al diseñarse los Sistemas Operativos se debe considerar cuidadosamente la sobrecarga de los mecanismos de administración de recursos comparándola con los beneficios esperados.

Planificación el Siguiente con Relación de Respuesta Máxima (HRN)
Corrige algunas de las debilidades del SJF, tales como el exceso de perjuicio hacia los procesos (trabajos) largos y el exceso de favoritismo hacia los nuevos trabajos cortos.
Es una disciplina no apropiativa.
La prioridad de cada proceso está en función no sólo del tiempo de servicio del trabajo, sino que también influye la cantidad de tiempo que el trabajo ha estado esperando ser servido.
Cuando un proceso ha obtenido la cpu, corre hasta terminar.
Las prioridades, que son dinámicas, se calculan según la siguiente fórmula, donde pr es la “prioridad”, te es el “tiempo de espera” y ts es el “tiempo de servicio”:



Prioridad
 

 Planificación por Prioridad
Considera factores externos al proceso [23, Tanenbaum].
Las ideas centrales son que cada proceso tiene asociada una prioridad y que el proceso ejecutable con máxima prioridad es el que tiene el permiso de ejecución.
Los procesos de alta prioridad podrían ejecutar indefinidamente, ya que el planificador del sistema puede disminuir la prioridad del proceso en ejecución en cada interrupción del reloj.
Las prioridades también pueden ser asignadas dinámicamente por el sistema para lograr ciertas metas relacionadas con el procesador o la Entrada / Salida.
Los procesos limitados por la Entrada / Salida (requerimientos intensivos de Entrada / Salida) ocupan mucho de su tiempo en espera de operaciones de Entrada / Salida, por lo tanto:
  • Deben tener prioridad para usar la cpu y efectuar la siguiente petición de Entrada / Salida, ya que se ejecutará (la operación de Entrada / Salida) en paralelo con otro proceso que utilice la cpu.
  • Si deben esperar mucho tiempo a la cpu estarán ocupando memoria por un tiempo innecesario.
Un algoritmo sencillo consiste en establecer que la prioridad sea “1 / f”, donde “f” es la fracción del último cuanto utilizado por el proceso. Un proceso que utilice 2 mseg (dos milisegundos) de su cuanto de 100 mseg (cien milisegundos) tendrá prioridad 50 (cincuenta).
Un proceso que se ejecutó 50 mseg antes del bloqueo tendrá prioridad 2.
Un proceso que utilizó todo el cuanto tendrá prioridad 1.
Frecuentemente los procesos se agrupan en “Clases de Prioridad”, en cuyo caso se utiliza la Planificación con Prioridades entre las clases y con Round Robin (RR) dentro de cada clase. Si las prioridades no se reajustan en algún momento, los procesos de las clases de prioridad mínima podrían demorarse indefinidamente.

Colas de Retroalimentación de Niveles Múltiples
Proporcionan una estructura para lograr los siguientes objetivos:
  • Favorecer trabajos cortos.
  • Favorecer trabajos limitados por la Entrada / Salida para optimizar el uso de los dispositivos de Entrada / Salida.
  • Determinar la naturaleza de un trabajo lo más rápido posible y planificar el trabajo (proceso) en consecuencia.
Un nuevo proceso entra en la red de línea de espera al final de la cola superior. Se mueve por esta cola “FIFO” hasta obtener la cpu.
Si el trabajo termina o abandona la cpu para esperar por la terminación de una operación de Entrada / Salida o la terminación de algún otro suceso, el trabajo abandona la red de línea de espera.
Si su cuanto expira antes de abandonar la cpu voluntariamente, el proceso se coloca en la parte trasera de la cola del siguiente nivel inferior.
El trabajo recibe servicio al llegar a la cabeza de esta cola si la primera está vacía.
Mientras el proceso continúe consumiendo totalmente su cuanto en cada nivel, continuará moviéndose hacia el final de las colas inferiores.
Generalmente hay una cola en la parte más profunda a través de la cual el proceso circula en asignación de rueda hasta que termina.
Existen esquemas en los que el cuanto otorgado al proceso aumenta a medida que el proceso se mueve hacia las colas de los niveles inferiores, en tal caso, cuanto más tiempo haya estado el proceso en la red de línea de espera, mayor será su cuanto cada vez que obtiene la cpu y no podrá obtener la cpu muy a menudo debido a la mayor prioridad de los procesos de las colas superiores.
Un proceso situado en una cola dada no podrá ser ejecutado hasta que las colas de los niveles superiores estén vacías.
Un proceso en ejecución es apropiado por un proceso que llegue a una cola superior.
Es un mecanismo adaptable, es decir que se adapta a cargas variables.
A los efectos de una revisión gráfica de lo enunciado precedentemente.

Política Versus Mecanismo de Planificación
Puede ocurrir que haya procesos con muchos procesos hijos ejecutándose bajo su control, por ejemplo, un proceso en un DBMS con procesos hijos atendiendo funciones específicas, tales como, análisis de interrogantes, acceso a discos, etc.
Es posible que el proceso principal (padre) pueda identificar la importancia (o criticidad) de sus procesos hijos, pero los planificadores analizados no aceptan datos de los procesos de usuario relativos a decisiones de planificación.
La solución es separar el mecanismo de planificación de la política de planificación, para ello se parametriza el algoritmo de planificación y los parámetros pueden ser determinados por medio de procesos del usuario; así el mecanismo está en el núcleo del Sistema Operativo pero la política queda establecida por un proceso del usuario.

Planificación de Dos Niveles
Los esquemas analizados hasta ahora suponen que todos los procesos ejecutables están en la memoria principal.
Si la memoria principal es insuficiente, ocurrirá lo siguiente [23, Tanenbaum]:
  • Habrá procesos ejecutables que se mantengan en disco.
  • Habrá importantes implicaciones para la planificación, tales como las siguientes:
    • El tiempo de alternancia entre procesos para traer y procesar un proceso del disco es considerablemente mayor que el tiempo para un proceso que ya está en la memoria principal.
    • Es más eficiente el intercambio de los procesos con un planificador de dos niveles.

Tipos de planificación del procesador.
El esquema operativo de un planificador de dos niveles es como sigue:
  1. Se carga en la memoria principal cierto subconjunto de los procesos ejecutables.
  2. El planificador se restringe a ellos durante cierto tiempo.
  3. Periódicamente se llama a un planificador de nivel superior para efectuar las siguientes tareas:
    1. Eliminar de la memoria los procesos que hayan permanecido en ella el tiempo suficiente.
    2. Cargar a memoria los procesos que hayan estado en disco demasiado tiempo.
  4. El planificador de nivel inferior se restringe de nuevo a los procesos ejecutables que se encuentren en la memoria.
  5. El planificador de nivel superior se encarga de desplazar los procesos de memoria a disco y viceversa.
Los criterios que podría utilizar el planificador de nivel superior para tomar sus decisiones son los que se indican a continuación:
  • ¿Cuánto tiempo ha transcurrido desde el último intercambio del proceso?.
  • ¿Cuánto tiempo de cpu ha utilizado recientemente el proceso?.
  • ¿Qué tan grande es el proceso? (generalmente los procesos pequeños no causan tantos problemas en este sentido).
  • ¿Qué tan alta es la prioridad del proceso?.
El planificador de nivel superior podría utilizar cualquiera de los métodos de planificación analizados

No hay comentarios:

Publicar un comentario